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Abstract

In cancer radiotherapy, the standard formulation of the optimal fractionation problem based
on the linear-quadratic dose-response model is a non-convex quadratically constrained quadratic
program (QCQP). An optimal solution for this QCQP can be derived by solving a two-variable
linear program. Feasibility of this solution, however, crucially depends on the so-called alpha-
over-beta ratios for the organs-at-risk, whose true values are unknown. Consequently, the dosing
schedule presumed optimal, in fact, may not even be feasible in practice. We address this by
proposing a robust counterpart of the nominal formulation. We show that a robust solution can
be derived by solving a small number of two-variable linear programs, each with a small number
of constraints. We quantify the price of robustness, and compare the incidence and extent of
infeasibility of the nominal and robust solutions via numerical experiments.

1 Background and motivation

The goal in external beam radiotherapy for cancer is to maximize damage to the tumor while
limiting toxic effects of radiation on nearby organs-at-risk (OAR). Treatment is typically delivered
over multiple treatment sessions called fractions. This leads to a well-known optimization problem,
often referred to as the fractionation problem. The goal in this problem is to find the number of
fractions N and a corresponding sequence ~d = (d1, d2, . . . , dN ) of doses so as to maximize tumor-
damage while ensuring that the OAR can safely tolerate these doses. The fundamental tradeoffs in
this problem are as follows. Normal-cells often have a better damage-repair capability than tumor-
cells. Temporal dispersion of dose across multiple fractions thus gives the OAR time to recover
between sessions. For most tumors, a large number of fractions with a small dose per fraction
allows the treatment planner to inflict more damage on the tumor as compared to administering
a small number of fractions with a large dose per fraction. However, tumors can proliferate over
the treatment course, and thus a shorter course might work better as it kills the tumor before
any significant proliferation. Thus the question is whether or not and how the treatment planner
can exploit, for patients’ benefit, the differences in the way in which tumors and OAR respond to
radiation.

1.1 Mathematical formulations of the fractionation problem

The fractionation problem has been studied extensively, both clinically and mathematically, for over
a century [22]. Mathematical formulations of this problem routinely rely on the linear-quadratic
(LQ) cell-survival model [14]. Key parameters of the LQ model include the so-called α/β ratios for
the OAR. Research that uses this LQ model has evolved from single-OAR formulations, to two-OAR
formulations, and, more recently, to models with multiple OAR. All of these formulations belong to
the class of non-convex quadratically constrained quadratic programs (QCQPs) — problems known
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to be computationally difficult in general. A closed-form optimal solution is available for the single
OAR case (see, for example, [7, 12, 13, 15, 20, 28] and references therein). One paper provided an
optimal dosing scheme using Karush-Kuhn-Tucker conditions for the two-OAR case for a fixed N
[5]. A simulated annealing heuristic was applied to a two-OAR formulation in [29].

The most recent multiple-OAR formulation of this problem (see [24, 26]) is given by

(FRAC) max
~d, N

α0

N∑
t=1

dt + β0

N∑
t=1

d2
t − τ(N) (1)

N∑
t=1

dt + ρm

N∑
t=1

d2
t ≤ BEDm, m ∈M, (2)

~d ≥ 0, (3)

1 ≤ N ≤ Nmax, integer. (4)

In this problem, α0, β0 are the tumor’s dose-response parameters as per the LQ model. The term
τ(N) in the objective function accounts for tumor proliferation and is given by

τ(N) =
[(N − 1)− Tlag]+ ln 2

Tdouble
, (5)

where [(N − 1)− Tlag]+ is defined as max {0, (N − 1)− Tlag}. Here, Tlag is the time-lag (in days)
after which tumor proliferation starts after treatment initiation; and Tdouble (in days) denotes the
doubling time for the tumor. This proliferation term assumes that a single fraction is administered
every day; it can be generalized to accommodate other fractionation schemes as described in [24].
The objective function equals the biological effect (BE) of ~d on the tumor, which is to be maximized.
In constraints (2), M = {1, 2, . . . , n} is the set of n ≥ 1 OAR. The parameter ρm = βm/αm is the
aforementioned (inverse) ratio of dose-response parameters for OAR m ∈ M. The left hand side
of each constraint equals the biologically effective dose (BED) administered to the corresponding
OAR. The term on the right hand side is given by BEDm = Dm+ρmD

2
m/Nm. It equals the BED of

a conventional treatment schedule that administers a total dose of Dm in Nm equal-dosage fractions
and that OAR m is known to tolerate. Thus, each of these constraints ensures that, for each OAR,
the BED of ~d is no more than what is safe for that OAR. In constraint (4), Nmax is the maximum
number of fractions that is logistically feasible in the treatment protocol. In the sequel, we will
often refer to (FRAC) as the nominal problem.

1.2 Optimal solution of the nominal fractionation problem

An optimal solution for this multiple-OAR case was provided in [24]; this solution works either when
α0/β0 ≤ min

m∈M
(αm/βm) or when α0/β0 ≥ max

m∈M
(αm/βm). The first provably optimal solution that

works irrespective of the ordering of these ratios for the multiple-OAR case was recently derived in
[26] based on the doctoral dissertation of Saberian [23]. This solution was obtained by equivalently
reformulating (FRAC) for each fixed N as a two-variable linear program (LP) with n + 2 linear
constraints and non-negativity constraints on the two variables. The two variables in this LP are

x =
N∑
t=1

dt and y =
N∑
t=1

d2
t and the LP is given by

(2VARLP) max
x,y

α0x+ β0y − τ(N) (6)

x+ ρmy ≤ BEDm, m ∈M, (7)
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y ≤ γ∗x, (8)

c∗x ≤ y, (9)

x ≥ 0, (10)

y ≥ 0, (11)

where γ∗ = min
m∈M

bm(1) and c∗ = min
m∈M

bm(N) with bm(N) =
−1+
√

1+4ρmBEDm/N

2ρm
for m ∈ M and

for all N ≥ 1. Specifically, for each fixed N , if x∗, y∗ is an optimal solution of this LP, then the
dosing schedule (q, p, p, . . . , p︸ ︷︷ ︸

N−1 times

), where

p =
x∗

N

[
1−

√√√√1−

(
1− y∗

(x∗)2

)(
N

N − 1

)]
, (12)

q = x∗ − (N − 1)p, (13)

is optimal. Moreover, it can be shown that there are only three possibilities for x∗ and y∗. The
first is where

√
y∗ = x∗ and then p = 0 (this is called a single-dosage solution); the second is

where
√
Ny∗ = x∗ and then p = q (this is called an equal-dosage solution); and the third is where√

y∗ < x∗ <
√
Ny∗ and then 0 6= p 6= q 6= 0 (this is called an unequal-dosage solution) (see [23, 26]

for details). An optimal number of fractions can then be found by substituting a dosing schedule
so obtained into the objective function in (FRAC) for each N ∈ {1, 2, . . . , Nmax} and picking the
one that yields the largest tumor BE. Consequently, (FRAC) is solved by solving exactly Nmax

two-variable LPs.

1.3 Limitations of existing formulations and our contributions

One drawback of all aforementioned formulations of the fractionation problem based on the LQ
model is that the values of ρm are not known. Thus, a dosing schedule derived using estimated or
“nominal” values of these parameters may not even be feasible in practice.

In a recent unpublished manuscript [2], Badri et al., independently of an earlier (May 2015)
unpublished version of our present work, attempted to remedy this by studying a robust formulation
of the above fractionation problem. In their formulation, the treatment planner derives a robust
solution by assuming that the ρm values vary within a known non-negative interval. However,
the crucial dependence of the right hand side BEDm on ρm in constraints (2) was ignored in that
manuscript. This meant that an optimal solution to their robust formulation was obtained by
replacing ρm on the left hand side in (2) by its largest possible value. This implied that the robust
solution is derived simply by solving the two-variable LP in [23, 26]. Unfortunately, since the right
hand side in constraints (2) in fact explicitly depends on ρm, such a simplified solution might not
be robust in practice. Badri et al. rectified this limitation in an updated unpublished variation [1]
of their original manuscript, again independently of the earlier (May 2015) unpublished version of
our present work that they cited.

The main focus of the original and the updated versions by Badri et al. was on a chance con-
strained formulation of the problem, which required the treatment planner to know the probability
distribution of alpha-over-beta ratios, and which called for a computationally more demanding solu-
tion approach than what is needed for the robust formulation. On the plus side, a potential benefit
of the resulting chance constrained solution is that it might be less conservative than the robust
solution (although this is perhaps impossible to verify rigorously). Given their alternative focus,
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Badri et al. gave a somewhat cursory treatment to the robust approach in both their manuscripts,
did not present an infeasibility analysis of the resulting robust solutions, did not quantify the price
of robustness, and only included minimal sensitivity results.

Here we study essentially the same robust problem as in the updated version of Badri et al. We
do, however, provide mathematical and clinical insights missing in their work. Firstly, we present
our solution approach in much more detail. We show that, for each fixed N , an optimal solution to
the non-convex robust problem can be recovered by solving n+ 1 two-variable LPs. Consequently,
the robust fractionation problem is solved by solving (n+ 1)Nmax two-variable LPs; each of these
LPs includes n + 2 linear constraints and non-negativity constraints on the two variables. We
perform sensitivity analyses with respect to the values of Tlag and Tdouble currently available in
the clinical literature to numerically quantify the price of robustness. We also provide qualitative
and quantitative comparisons between the nominal and robust fractionation schedules. Finally, we
present an extensive analysis of the infeasibility suffered by the nominal and robust solutions in a
broad range of scenarios.

This paper is organized as follows. Our robust formulation is described in the next section.
The solution approach is detailed in Section 3. Numerical results are presented in Section 4. We
conclude with a summary of our contributions, an outline of some variations and limitations of our
model, and opportunities for future work.

2 A robust formulation

We refer the reader to [3] for a textbook and to [4] for a survey on robust optimization. We employ
a standard interval uncertainty model from these existing works to construct a robust counterpart
of the nominal problem (FRAC). Specifically, we use ρ̃m to denote the “true” unknown value of
ρm, for m = 1, . . . , n. We assume that this unknown value belongs to a known interval of values
[ρmin
m , ρmax

m ]; here 0 < ρmin
m ≤ ρmax

m < ∞. We wish to find an N, ~d pair that is feasible to BED
constraints (2) for all m ∈ M no matter what true values ρ̃m are realized (as long as they belong
to the aforementioned intervals). The resulting robust counterpart of (FRAC) is given by

max
~d, N

α0

N∑
t=1

dt + β0

N∑
t=1

d2
t − τ(N) (14)

N∑
t=1

dt + ρ̃m

(
N∑
t=1

d2
t −

D2
m

Nm

)
≤ Dm, m ∈M, ∀ρ̃m ∈ [ρmin

m , ρmax
m ], (15)

~d ≥ 0, (16)

1 ≤ N ≤ Nmax, integer. (17)

Note here that, for simplicity of exposition, our formulation does not consider uncertainty in the
values of α0 and β0 for the tumor. It is standard in robust optimization to not include uncertainty
in the objective function coefficients. Uncertainty in these tumor parameters can, however, be
easily incorporated by maximizing the worst-case value of the objective function (we accomplish
this in our numerical results in Section 4.3).

By introducing ρmean
m = (ρmax

m + ρmin
m )/2 and ρrange

m = (ρmax
m − ρmin

m )/2, and after some simple
algebra, we can see that for each OAR m ∈ M, constraint 15 is equivalent to the following
constraint:

N∑
t=1

dt + ρmean
m

N∑
t=1

d2
t + ρrange

m

∣∣∣∣∣
N∑
t=1

d2
t −

D2
m

Nm

∣∣∣∣∣ ≤ Dm + ρmean
m

D2
m

Nm
. (18)
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Thus, by defining the shorthand notation RCm = Dm + ρmean
m

D2
m

Nm
, and putting the above pieces

together, we can rewrite the robust counterpart (14)-(17) as

(RFRAC) f∗ = max
~d, N

α0

N∑
t=1

dt + β0

N∑
t=1

d2
t − τ(N) (19)

N∑
t=1

dt + ρmean
m

N∑
t=1

d2
t + ρrange

m

∣∣∣∣∣
N∑
t=1

d2
t −

D2
m

Nm

∣∣∣∣∣ ≤ RCm, m ∈M, (20)

~d ≥ 0, (21)

1 ≤ N ≤ Nmax, integer. (22)

As in the nominal problem, in order to solve this robust problem, we first solve the problems
obtained by fixing N at 1, 2, . . . , Nmax. For each fixed N , let ~d∗(N) = (d∗1(N), . . . , d∗N (N)) denote
the corresponding optimal dosing sequence. We then compare the objective values of these N dosing
sequences and pick the best. Thus, the problem we need to solve for each fixed N ∈ {1, 2, . . . , Nmax}
is given by

(RFRAC(N)) f∗(N) = max
~d

α0

N∑
t=1

dt + β0

N∑
t=1

d2
t − τ(N) (23)

N∑
t=1

dt + ρmean
m

N∑
t=1

d2
t + ρrange

m

∣∣∣∣∣
N∑
t=1

d2
t −

D2
m

Nm

∣∣∣∣∣ ≤ RCm, m ∈M, (24)

~d ≥ 0. (25)

Note that when ρmin
m = ρmax

m = ρm, for m = 1, 2, . . . , n, that is, when there is no uncertainty in
these dose-response parameters, (RFRAC(N)) reduces to the nominal QCQP (FRAC) with N fixed
as presented in Section 1, and which was solved recently as a two-variable LP in [23, 26]. Note,
however, that the objective function as well as the constraints in (RFRAC(N)) are non-convex,
and the problem is at least as hard as the nominal QCQP. The objective function in the nominal
QCQP is identical in form to what we have in (RFRAC(N)), but the convex, quadratic constraints
in the nominal QCQP do not include the absolute value term that appears in the corresponding
constraints in (RFRAC(N)). Specifically, it is this absolute value term that makes the robust
counterpart harder to solve as compared to the nominal problem. To overcome this challenge, we
decompose the feasible region of (RFRAC(N)) into n+1 subregions in a way such that the problem
over each subregion can be solved via a two-variable LP. The details of this procedure are discussed
in the next section.

3 Optimal solution of the robust formulation

To handle the absolute value term on the left hand side in constraints (24), we decompose the
non-negative orthant {~d ∈ <N |~d ≥ 0} as follows. For each OAR m ∈M, consider two possibilities:

the first is where
N∑
t=1

d2
t ≥ D2

m/Nm and the second is
N∑
t=1

d2
t < D2

m/Nm. Suppose, in the rest of this

section, without loss of generality that D2
1/N1 ≤ D2

2/N2 ≤ . . . ≤ D2
n/Nn. Then, if there is a ~d ≥ 0

and an OAR m ∈ M such that
N∑
t=1

d2
t ≥ D2

m/Nm, then for this ~d, we have that
N∑
t=1

d2
t ≥ D2

m′/Nm′
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for all m′ < m. Similarly, if there is a ~d ≥ 0 and an OAR m ∈ M such that
N∑
t=1

d2
t < D2

m/Nm,

then for this ~d, we have that
N∑
t=1

d2
t < D2

m′/Nm′ for all m′ > m. This means that the non-negative

orthant {~d ∈ <N |~d ≥ 0} is partitioned into n + 1 subregions indexed by k = 0, 1, 2, . . . , n. In the

kth region,
N∑
t=1

d2
t ≥ D2

m/Nm for the first k OAR and
N∑
t=1

d2
t < D2

m/Nm for the last n − k OAR.

Let RC+ = Dm+ρmax
m

D2
m

Nm
and RC− = Dm+ρmin

m
D2

m
Nm

. Then, simple algebra reveals that for all ~d in

the kth subregion, constraint (24) reduces to
N∑
t=1

dt + ρmax
m

N∑
t=1

d2
t ≤ RC+

m for OAR m = 1, 2, . . . , k

when k 6= 0; and it reduces to
N∑
t=1

dt + ρmin
m

N∑
t=1

d2
t ≤ RC−m for OAR k + 1, k + 2, . . . , n when k 6= n.

As a result of the above discussion, (RFRAC(N)) is solved by solving n + 1 subproblems and
then picking a dosing schedule with the largest tumor BE from the resulting n+ 1 solutions. The
kth subproblem is given by

(kSub(N)) max
~d

α0

N∑
t=1

dt + β0

N∑
t=1

d2
t − τ(N) (26)

N∑
t=1

dt + ρmax
m

N∑
t=1

d2
t ≤ RC+

m, m = 1, 2, . . . , k, k 6= 0, (27)

N∑
t=1

dt + ρmin
m

N∑
t=1

d2
t ≤ RC−m, m = k + 1, k + 2, . . . , n, k 6= n, (28)

N∑
t=1

d2
t ≥

D2
m

Nm
, m = 1, 2, . . . , k, k 6= 0, (29)

N∑
t=1

d2
t <

D2
m

Nm
, m = k + 1, k + 2, . . . , n, k 6= n, (30)

~d ≥ 0. (31)

In addition, owing to the fact that D2
1/N1 ≤ D2

2/N2 ≤ . . . ≤ D2
n/Nn, the group of n constraints

in (29)-(30) reduces to at most two constraints:
N∑
t=1

d2
t ≥

D2
k

Nk
when k 6= 0 and

N∑
t=1

d2
t <

D2
k+1

Nk+1
when

k 6= n. After replacing this second strict inequality with a non-strict inequality1, this simplifies the
kth subproblem to

(kSub(N)) f∗(N ; k) = max
~d

α0

N∑
t=1

dt + β0

N∑
t=1

d2
t − τ(N) (32)

N∑
t=1

dt + ρmax
m

N∑
t=1

d2
t ≤ RC+

m, m = 1, 2, . . . , k, k 6= 0, (33)

1This can be rigorously justified by proving that if there is a feasible dosing schedule that satisfies
N∑
t=1

d2t =
D2

k+1

Nk+1

in the kth subproblem with a non-strict inequality, then this dosing schedule is feasible to the k + 1st subproblem
with a strict inequality; consequently, using non-strict inequalities does not alter optimality in our overall group of
n + 1 subproblems with strict inequalities. We omit the details of this proof for brevity.
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N∑
t=1

dt + ρmin
m

N∑
t=1

d2
t ≤ RC−m, m = k + 1, k + 2, . . . , n, k 6= n, (34)

N∑
t=1

d2
t ≥

D2
k

Nk
, k 6= 0, (35)

N∑
t=1

d2
t ≤

D2
k+1

Nk+1
, k 6= n, (36)

~d ≥ 0. (37)

The objective function and the constraints (33)-(34) in this subproblem are identical in form
to that in the nominal problem (FRAC) with N fixed. Thus, the only difference between this
subproblem and the nominal problem is the appearance of the additional constraints (35)-(36). In
order to solve this problem, we first relax these two constraints and use the variable transformation

x =
N∑
t=1

dt and y =
N∑
t=1

d2
t as in [23, 26], to convert the relaxed subproblem into an equivalent

two-variable LP. To write this LP compactly, we first introduce additional notation. Let

RCk
m =

{
RC+

m, for m = 1, 2, . . . , k, k 6= 0,

RC−m, for m = k + 1, k + 2, . . . , n, k 6= n;
(38)

and similarly,

ρkm =

{
ρmax
m , for m = 1, 2, . . . , k, k 6= 0,

ρmin
m , for m = k + 1, k + 2, . . . , n, k 6= n.

(39)

Moreover, let

ck = min
m∈M

−1 +
√

1 + 4ρkmRCk
m/N

2ρkm
, and (40)

γk = min
m∈M

−1 +
√

1 + 4ρkmRCk
m

2ρkm
. (41)

Then, the two-variable LP can be written as

(2VARLPkSub(N)) max
x,y

α0x+ β0y − τ(N) (42)

x+ ρkmy ≤ RCk
m, m ∈M, (43)

y ≤ γkx, (44)

ckx ≤ y, (45)

x ≥ 0, (46)

y ≥ 0. (47)

Let x∗, y∗ be an optimal solution to this two-variable LP. If
D2

k
Nk
≤ y∗ ≤ D2

k+1

Nk+1
as required by

constraints (35)-(36), we are done. If not, then an optimal solution can be recovered as explained
in Figure 1. Then, finally, a corresponding dosing schedule ~d∗(N) = (d∗1(N), d∗2(N), . . . , d∗N (N)) =
(q, p, p, . . . , p︸ ︷︷ ︸

N−1 times

) that is optimal to problem (kSub(N)) is recovered by formulas (12)-(13).
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Figure 1: (a) A schematic illustration of the relationship between adjacent points in the feasible region of the subproblem k.
When (C) is optimal, due to the linearity of the constraint and the objective function, it can be easily shown (via geometric
or analytical proof) that the denoted points in the left-hand and right-hand side of the optimal point (C) are ranked as follows
in terms of their objective value: (A)�(B)�(C) and similarly, (E)�(D)�(C). (b) A schematic illustration of the method for
deriving the alternative optimal solution when optimal solution obtained by solving the relaxed subproblem (SubLP k) does
not belong to the feasible region of subproblem k. By following the same logic as in (a), we can argue that when (A) or (D) are
the primary optimal solutions and are cut off by y1 or y2, (B) or (C) are the next-best optimal solutions, respectively. Also,
because of the slope of the objective function, (B) and (C) are superior to (F) and (E), respectively.

4 Numerical experiments

4.1 Qualitative properties of robust solutions

An unavoidable downside to using robust optimization in general is that it sacrifices the value of
the objective function in favor of a robust solution. Thus, it is important to quantify how much
we are losing in terms of the objective value by solving the robust problem instead of solving the
nominal problem. This is often called the price of robustness.

In this section, we numerically quantify the price of robustness via computer simulations for
head-and-neck cancer. In these simulations, as in [24], we considered four OAR (n = 4), namely,
spinal cord, brainstem, left and right parotids. For the tumor, we fixed α0 = 0.35 Gy−1 and
β0 = 0.035 Gy−2 as is standard in the clinical literature [9, 10, 11, 12]. Again, based on the clinical
literature [9, 11, 29], the nominal α/β ratios for spinal cord, brainstem, left and right parotids were
fixed at 3, 4, 5, 6 Gy; that is, ρ1 = 1/3, ρ2 = 1/4, ρ3 = 1/5, ρ4 = 1/6. Here, we used different values
of nominal ratios for different OAR to fully explore the various possibilities that could arise in a
robust formulation with multiple OAR. The tolerance doses for these OAR were fixed at 45, 50,
26, and 28 Gy, respectively, and the conventional number of fractions Nm was fixed at 35 days for
all OAR similar to the standard QUANTEC treatment protocol [19]. Nmax was set to 100 days.
The uncertainty intervals were parameterized as ρ̃m ∈ [(1− δ)ρm, (1 + δ)ρm], where δ ∈ [0, 1]. This
allowed us to easily quantify the price of robustness as a function of the uncertainty level δ. We
varied δ from 0 (to represent the nominal case) to 1 (to denote the most uncertain case with 100%
uncertainty) in increments of 0.1. All experiments were carried out in MATLAB on a laptop with
2.20 GHz Intel Core2 Duo CPU and 2 GB of memory, running a Microsoft Windows 8.1 operating
system. Tables 1 and 2 summarize the results of our experiments for different values of Tlag, Tdouble,
and δ. In these tables, Tlag values were set to 7, 14, 21, 28, 35 days based on [11] and Tdouble values
were set to 2, 8, 10, 20, 40, 50, 80, 100 days based on [9, 11, 21, 29]. We are aware that the value of
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35 days for Tlag is perhaps too high; similarly, the values of 80 and 100 days for Tdouble are also
perhaps too high for head-and-neck cancer. These somewhat extreme values were included in our
simulations to fully explore possible trends in various results of interest.

Table 1 shows, as expected, that the price of robustness increases with increasing δ for each Tlag,
Tdouble combination. Overall, the price of robustness seems to be quite small in most experiments
with an average of 1.27% over all 400 experiments. The first, second, and third quartiles were
0.12%, 0.47%, and 1.44%, respectively.

For each Tlag, δ combination in Table 1, the price of robustness first decreases with increasing
Tdouble, reaches the smallest value when Tdouble = 50 days and then increases. This trend is
consistent with the corresponding trend in the difference between Nm = 35 and N∗ that can be
inferred from Table 2. Specifically, for each Tlag, δ combination, the magnitude of Nm−N∗ decreases
with increasing Tdouble, reaches about a day or two when Tdouble = 50, and then increases. In fact,
as we can see in Figure 2(d), when N = Nm = 35, the price of robustness is exactly zero; more
strongly, we found that this held true irrespective of the values of δ, Tlag, and Tdouble. A detailed
algebraic proof of this fact can be developed, but is omitted here for brevity. Roughly speaking, the
key idea in this proof is that when N = Nm, the BED constraints reduce to total dose constraints;
this eliminates the dependence of the BED constraint on ρm and hence an equal-dosage solution
that splits the tolerance dose across N fractions is optimal to the nominal and the robust problem.
Consequently, the price of robustness is zero. Finally, for any combination of δ and Tdouble in
Table 1, the price of robustness decreases as Tlag increases. Again, this is also consistent with the
corresponding trend in the magnitude of Nm −N∗.

A closer look at Table 2 reveals that the evolution of N∗ with δ for various fixed combinations of
Tdouble and Tlag does not exhibit a universal trend. For instance, when Tlag = 7 days and Tdouble = 2
days, N∗ = 8 for all δ (also see Figure 2 (a)). However, N∗ increases with increasing δ when Tlag = 7
days and Tdouble = 10 days (Figure 2 (b)). On the other hand, N∗ decreases as δ increases when
Tlag = 7 days and Tdouble = 100 days (Figure 2 (c)). Consistent with this observation, Table 2 also
shows that for each fixed combination of Tdouble and Tlag, optimal doses do not exhibit a universal
qualitative trend as a function of δ.

Finally, our robust solutions continue to exhibit qualitative trends that are well-established
in the nominal case (see [24] and references therein). For instance, N∗ increases with increasing
Tdouble for any fixed δ, Tlag combination; similarly, N∗ also increases as Tlag increases for any fixed
δ, Tdouble combination.

4.2 Infeasibility tests

As mentioned before, the primary motivation for the robust formulation is that the optimal solution
obtained by solving the nominal formulation is guaranteed to be feasible only for nominal values
of ρ. This means that if the actual ρ values turn out to be different than the nominal, the nominal
solution might become infeasible. To quantify the frequency and extent of such infeasibility, we
first performed a set of numerical experiments where the realized values of ρ were assumed to equal
various grid-points in the uncertainty intervals around the nominal values. It turned out that while
ρ varied in this manner over grid-points inside the uncertainty interval, the nominal solution was
infeasible in about 75% of the cases; the robust solution of course remained feasible in all cases.
The amount of infeasibility in some cases was rather large — close to 50%, with an average of
10.5%. The first, second, and third quartiles were 3.99%, 8.44%, and 15.76%, respectively. Given
the relatively small price of robustness reported in Section 4.1, this suggests that it might be
worthwhile to implement the robust dosing schedules rather than the nominal ones.

In the robust counterpart, we assumed that the value of ρ for each OAR belongs to a known
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interval. Therefore, any solution to our robust formulation is guaranteed to be feasible only as long
as this assumption holds. Due to the uncertainty in the actual values of ρ, however, this assumption
could be violated. In that case, our robust solution might not be feasible after all. To test the
impact of this unfortunate occurrence, we performed numerical experiments where ρ values were
varied outside the predetermined uncertainty interval. In particular, for each uncertainty level
δ and constraint m, five grid-points were chosen at ρ̃m = (1 + δ + γ)ρm and five grid-points at
ρ̃m = (1− δ − γ)ρm, where γ ∈ {0.1, 0.2, . . . , 0.5} and ρm denotes the nominal value. The nominal
solution was infeasible in over 65% of the cases, while the robust solution was infeasible in 43%
of the cases. The amount of infeasibility was found to be statistically lower (via a pairwise t-test
at the p = 0.05 significance level) for the robust solution than the nominal solution over all cases.
This is encouraging because it suggests that the robust solution might be “more robust” than the
nominal solution even when ρ values are outside the uncertainty intervals (although it does not
appear possible to rigorously state and prove this claim).

4.3 Uncertainty in tumor parameters

Throughout this paper, we assumed that the values of the tumor parameters α0 and β0 were known.
In this section, we investigate the effect of uncertainty in these tumor parameters. We assume that
both α̃0 and β̃0 belong to a known interval. That is, α̃0 ∈ [αmin

0 , αmax
0 ] and β̃0 ∈ [βmin

0 , βmax
0 ].

Since we are maximizing the objective function, the worst realization of the problem occurs when
α̃0 = αmin

0 , β̃0 = βmin
0 . That is, the robust objective value is simply attained by replacing α̃0

and β̃0 by their minimum values. Table 3 shows the effect of this uncertainty, assuming that
α̃0 ∈ [(1− θ)α̂0, (1 + θ)α̂0] and β̃0 ∈ [(1− θ)β̂0, (1 + θ)β̂0]. Here, the nominal values α̂0 and β̂0 were
set to 0.35 Gy and 0.035 Gy−2, respectively, and θ was varied in the set {0.1, 0.2, . . . , 0.9}. A quick
inspection of the table reveals that as the tumor uncertainty level increases, the number of fractions
decreases and the dose delivered in each session increases. In other words, higher uncertainty in
tumor parameters causes it to behave similar to faster-proliferating tumors.

5 Discussion

Most existing research on robust optimization in cancer radiotherapy focuses on incorporating
uncertainty in the actual dose delivered to various anatomical regions of interest via intensity
modulated radiation therapy (IMRT) and other treatment methods. Causes of this uncertainty
include patient movement, say due to breathing, or setup errors at the time of treatment delivery
(see, for instance, [6, 8, 16, 17, 18, 27] and references therein).

In this paper, we provided a robust formulation of the fractionation problem. Perhaps more im-
portantly, we also described in detail a simple method for exact solution of this robust formulation.
Although our robust formulation is, at first glance, inevitably at least as hard as a non-convex
QCQP, we were able to show that it can be solved to optimality by solving a few two-variable
LPs with a few constraints each. Our numerical experiments provided insights into the behavior
of nominal and robust dosing schedules and also quantified the price of robustness. Overall, our
comparison of the frequency and amount of infeasibility incurred by the nominal and the robust
solutions suggests that the robust solutions are indeed statistically more feasible and yet pay a
relatively small price of robustness. This could provide motivation for future investigations into
the use of biological dose-response models such as the LQ model for planning radiation treatment
as the uncertainty in dose-response parameters has been the main obstacle in widespread reliance
on these models (see [14]).
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Note that the nominal fractionation model in [24, 26] used the concept of sparing factors to
model the doses delivered to the various OAR. For instance, if dose dt is given to the tumor in
fraction t, then the dose to OAR m ∈ M equals smdt; here, sm is a non-negative sparing factor.
In this paper, we did not use such sparing factors because they would have been distracting to the
main message of our work. We do emphasize, however, that our solution procedure in Section 3
would work even if such sparing factors were included. More strongly, our solution method would
work even if the true values of these sparing factors were unknown but were instead assumed to
belong to a non-negative interval. This can be done simply by using the largest values of these
sparing factors in our robust formulation as in [1].

In a recent unpublished manuscript based on the doctoral dissertation of Saberian [23], Saberian
et al. [25] presented a spatiotemporally integrated formulation of the fractionation problem. The
decision variables in that formulation were N and the intensity profiles of the IMRT radiation fields
employed in each fraction. The numbers of variables and constraints in that non-convex formulation
are as large as tens of thousands. It would be interesting in the future to formulate the robust
counterpart of that model and to devise efficient approximate solution methods.
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Tlag = 7 Tdouble

δ 2 8 10 20 40 50 80 100

0.1 1.74% 1.44% 1.21% 0.56% 0.04% 0.01% 0.25% 0.36%
0.2 3.34% 2.67% 2.23% 0.98% 0.04% 0.01% 0.39% 0.62%
0.3 4.80% 3.74% 3.10% 1.31% 0.04% 0.01% 0.39% 0.70%
0.4 6.14% 4.66% 3.85% 1.56% 0.04% 0.01% 0.39% 0.70%
0.5 7.38% 5.48% 4.51% 1.74% 0.04% 0.01% 0.39% 0.70%
0.6 8.53% 6.22% 5.09% 1.87% 0.04% 0.01% 0.39% 0.70%
0.7 9.61% 6.88% 5.61% 1.95% 0.04% 0.01% 0.39% 0.70%
0.8 10.61% 7.47% 6.07% 2.00% 0.04% 0.01% 0.39% 0.70%
0.9 11.54% 8.01% 6.47% 2.02% 0.04% 0.01% 0.39% 0.70%
1 12.42% 8.50% 6.84% 2.02% 0.04% 0.01% 0.39% 0.70%

Tlag = 14 Tdouble

δ 2 8 10 20 40 50 80 100

0.1 0.92% 0.92% 0.92% 0.54% 0.04% 0.01% 0.25% 0.36%
0.2 1.78% 1.78% 1.78% 0.96% 0.04% 0.01% 0.38% 0.61%
0.3 2.59% 2.59% 2.59% 1.28% 0.04% 0.01% 0.39% 0.70%
0.4 3.34% 3.34% 3.30% 1.52% 0.04% 0.01% 0.39% 0.70%
0.5 4.05% 4.05% 3.93% 1.69% 0.04% 0.01% 0.39% 0.70%
0.6 4.71% 4.71% 4.48% 1.82% 0.04% 0.01% 0.39% 0.70%
0.7 5.34% 5.34% 4.97% 1.90% 0.04% 0.01% 0.39% 0.70%
0.8 5.93% 5.89% 5.41% 1.95% 0.04% 0.01% 0.39% 0.70%
0.9 6.49% 6.41% 5.80% 1.96% 0.04% 0.01% 0.39% 0.70%
1 7.02% 6.87% 6.14% 1.96% 0.04% 0.01% 0.39% 0.70%

Tlag = 21 Tdouble

δ 2 8 10 20 40 50 80 100

0.1 0.47% 0.47% 0.47% 0.47% 0.04% 0.01% 0.25% 0.36%
0.2 0.92% 0.92% 0.92% 0.88% 0.04% 0.01% 0.38% 0.61%
0.3 1.34% 1.34% 1.34% 1.19% 0.04% 0.01% 0.39% 0.69%
0.4 1.74% 1.74% 1.74% 1.42% 0.04% 0.01% 0.39% 0.69%
0.5 2.12% 2.12% 2.12% 1.60% 0.04% 0.01% 0.39% 0.69%
0.6 2.48% 2.48% 2.48% 1.72% 0.04% 0.01% 0.39% 0.69%
0.7 2.82% 2.82% 2.82% 1.80% 0.04% 0.01% 0.39% 0.69%
0.8 3.14% 3.14% 3.14% 1.85% 0.04% 0.01% 0.39% 0.69%
0.9 3.45% 3.45% 3.45% 1.86% 0.04% 0.01% 0.39% 0.69%
1 3.75% 3.75% 3.75% 1.86% 0.04% 0.01% 0.39% 0.69%

Tlag = 28 Tdouble

δ 2 8 10 20 40 50 80 100

0.1 0.18% 0.18% 0.18% 0.18% 0.04% 0.01% 0.25% 0.36%
0.2 0.35% 0.35% 0.35% 0.35% 0.04% 0.01% 0.38% 0.61%
0.3 0.52% 0.52% 0.52% 0.52% 0.04% 0.01% 0.38% 0.69%
0.4 0.67% 0.67% 0.67% 0.67% 0.04% 0.01% 0.38% 0.69%
0.5 0.82% 0.82% 0.82% 0.82% 0.04% 0.01% 0.38% 0.69%
0.6 0.97% 0.97% 0.97% 0.94% 0.04% 0.01% 0.38% 0.69%
0.7 1.10% 1.10% 1.10% 1.02% 0.04% 0.01% 0.38% 0.69%
0.8 1.23% 1.23% 1.23% 1.07% 0.04% 0.01% 0.38% 0.69%
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0.9 1.36% 1.36% 1.36% 1.08% 0.04% 0.01% 0.38% 0.69%
1 1.48% 1.48% 1.48% 1.08% 0.04% 0.01% 0.38% 0.69%

Tlag = 35 Tdouble

δ 2 8 10 20 40 50 80 100

0.1 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.25% 0.36%
0.2 0.06% 0.06% 0.06% 0.06% 0.06% 0.06% 0.38% 0.61%
0.3 0.08% 0.08% 0.08% 0.08% 0.08% 0.09% 0.41% 0.69%
0.4 0.12% 0.12% 0.12% 0.12% 0.12% 0.12% 0.44% 0.72%
0.5 0.15% 0.15% 0.15% 0.15% 0.15% 0.15% 0.47% 0.76%
0.6 0.15% 0.15% 0.15% 0.15% 0.15% 0.15% 0.47% 0.76%
0.7 0.15% 0.15% 0.15% 0.15% 0.15% 0.15% 0.47% 0.76%
0.8 0.15% 0.15% 0.15% 0.15% 0.15% 0.15% 0.47% 0.76%
0.9 0.15% 0.15% 0.15% 0.15% 0.15% 0.15% 0.47% 0.76%
1 0.15% 0.15% 0.15% 0.15% 0.15% 0.15% 0.47% 0.76%

Table 1: The price of robustness for different combinations of Tlag, Tdouble, and δ. The price of robustness equals ( g∗−f∗

g∗ )×100%,

where f∗ and g∗ are the optimal values of the robust and the nominal formulations, respectively.
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Figure 2: (a), (b), (c): The value of the objective as a function of N for Tlag = 7. The data points denoted by ∗ show the
points (N∗, f∗) in each graph. The uppermost line in each set of graphs (a), (b), and (c) represents the nominal case (δ = 0)
and the other lines correspond to δ = {0.1, 0.2, . . . , 1}, respectively, from top to bottom. (a) Tdouble = 2 days and N∗ = 8 for
all δ. (b) Tdouble = 10 days. In this case, N∗ increases with increasing δ. (c) Tdouble = 100 days. In this case, N∗ decreases
with increasing δ (from top to bottom). Moreover, note that in some cases (for example in (c)), some of these points lie on
top of each other as the optimal solution for their corresponding δ are equal. (d) Normalized price of robustness as a function
of N when Tlag = 7, Tdouble = 2. The uppermost line represents the most uncertain case (δ = 1) and other lines represent
δ = {0.9, 0.8, . . . , 0.1}, respectively, from top to bottom.
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