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Abstract

Objective: Traditional radiotherapy (RT) treatment planning of non-small cell lung cancer (NSCLC)
relies on population-wide estimates of organ tolerance to minimize excess toxicity. The goal of this
study is to develop a personalized treatment planning based on patient-specific lung radiosensitivity, by
combining machine learning and optimization.

Approach: Sixty-nine non-small cell lung cancer patients with baseline and mid-treatment [18]F-
fluorodeoxyglucose (FDG)-PET images were retrospectively analyzed. A probabilistic Bayesian Networks
(BN) model was developed to predict the risk of radiation pneumonitis (RP) at three months post-RT
using pre- and mid-treatment FDG information. A patient-specific dose modifying factor (DMF), as a
surrogate for lung radiosensitivity, was estimated to personalize the normal tissue toxicity probability
(NTCP) model. This personalized NTCP was then integrated into a NTCP-based optimization model
for RT adaptation, ensuring tumor coverage and respecting patient-specific lung radiosensitivity. The
methodology was employed to adapt the treatment planning of fifteen NSCLC patients.

Main results : The magnitude of the BN predicted risks corresponded with the RP severity. Average
predicted risk for grade 1-4 RP were 0.18, 0.42, 0.63, and 0.76, respectively (p < 0.001). The proposed
model yielded an average area under the receiver-operating characteristic curve (AUROC) of 0.84, out-
performing the AUROCs of LKB-NTCP (0.77), and pre-treatment BN (0.79). Average DMF for the
radio-tolerant (RP grade = 1) and radiosensitive (RP grade ≥ 2) groups were 0.8 and 1.63, p < 0.01. RT
personalization resulted in five dose escalation strategies (average mean tumor dose increase = 6.47 Gy,
range = [2.67-17.5]), and ten dose de-escalation (average mean lung dose reduction = 2.98 Gy [0.8-5.4]),
corresponding to average NTCP reduction of 15% [4-27].

Significance: Personalized FDG-PET-based mid-treatment adaptation of NSCLC RT could signifi-
cantly lower the RP risk without compromising tumor control. The proposed methodology could help
the design of personalized clinical trials for NSCLC patients.

1 Introduction

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for approximately
84% of all lung cancer diagnoses. Although radiation therapy (RT) is the most common treatment option
for unresectable NSCLC patients, its effectiveness in advanced-stage patients remains limited, with roughly
30% local failure rate at 2 years post chemo-RT [1]. Many studies have reported the positive impact of
higher tumor (biologically effective) dose in improving (chemo-)RT outcome; consequently, dose escalation
strategies have been adopted as a means to improve tumor control [2, 3, 4, 5, 6, 7, 8]. However, more
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aggressive treatments are typically constrained by higher risks of toxicity, including radiation pneumonitis
(RP) [9], esophagitis [1], and cardiac toxicity [10].

To improve the efficacy of these “one-size-fits-all” approaches, the field of radiation oncology has recently
experienced a surge in positron emission tomography (PET)-based dose escalation trials [11, 12, 13, 14, 15,
16]. However, therapeutic impact of such PET-based approaches is limited by four main factors: (i) the
assumption, either implicit or explicit, that PET tracer uptake is directly (linearly) related to radiosensitivity
(e.g., the higher the uptake, the higher the dose boost), (ii) relying on pre-specified (subjective) dose boost
(or reduction) levels without taking into account “optimal” dose level for individual patients, (iii) adopting
a tumor-centric approach with secondary emphasis on normal tissue response, and (iv) reliance on pre-
treatment images for assessing response, thereby treating patient response as static.

Considering these limitations, a more nuanced, personalized approach wherein the patient selection and
dose (de)escalation is performed by accounting for patient-specific radiosensitivity during the RT course
might prove more effective in terms of overall treatment-induced toxicity and tumor control.

In this work, we propose a novel mathematical framework for mid-treatment (dynamic) adaptation of
RT treatment course using patient-specific prediction of normal tissue toxicity. We focus on the risk of
symptomatic RP (grade ≥ 2), denoted by RP2+, as the main toxicity endpoint to guide the adaptation. 18F-
fluorodeoxyglucose (FDG) PET images acquired at baseline and during the course of treatment are used as
imaging biomarkers to predict the risk of RP at 3-months post-RT. A Bayesian predictive model is employed
to synthesize patient-specific PET imaging, clinicopathological, and dosimetric data into a predicted risk of
symptomatic RP. These biomarker-informed predictions are then integrated into treatment planning via a
patient-specific NTCP model to select individualized dose (de)escalation levels during the treatment course
and biologically adapt the treatment plan to minimize the patient-specific risk of RP and/or maximize tumor
control while keeping the patient-specific NTCP within a pre-specified threshold. Briefly, the contributions
of this study are as follows:

1. A framework for assessing patient-specific RP risk based on pre- and mid-treatment imaging data.

2. A method for updating patient-specific NTCP based on this estimated risk.

3. A methodology for incorporating the updated NTCP into the treatment plan optimization and adap-
tation.

The proposed methodology addresses the aforementioned gaps in PET-based dose (de)escalation strate-
gies: (i) it foregoes the linear assumption for estimating radiosensitivity, (ii) through a novel NTCP-based
treatment planning, it yields biologically-optimal plans, (iii) it takes into account patient-specific risk of
radiation toxicity, and (iv) by taking advantage of mid-treatment images, it treats the RT treatment and
patient response as a dynamic (rather than static) problem.

The current study should be regarded as a proof-of-concept towards a truly personalized treatment plan-
ning. It successfully combines biomarker information, machine learning-based risk prediction, and treatment
plan optimization. The overall methodology is modality-agnostic (could be used in photon or proton RT
delivery), and is designed flexible enough to adapt to other treatment sites beyond lung cancer, provided that
a reliable predictive model could be developed for the chosen toxicity endpoint. To the best of our knowl-
edge, this is the first instance of combing machine learning and treatment plan optimization for personalized
treatment at clinical scale.

2 Methods

Our methodology consists of three primary modules: the Risk Prediction module predicts the patient-
specific risk (probability) of RP2+, P (RP), using baseline and mid-treatment patient-specific information.
This prediction will then be used as input to the NTCP Update module, wherein a patient-specific NTCP
will be calculated using the concept of dose modifying factor (DMF) [17]. Finally, the Plan Adaptation
module adapts the RT treatment plan based on this patient-specific NTCP estimate to minimize the risk of
RP2+, within the constraints imposed by tumor control. A detailed flowchart of the proposed framework is
given at the end of § 2.5.3.
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Figure 1: Workflow for the PET-PET image registration process.

2.1 Dataset

The data for our study comes from a recent Phase II clinical trial of photon (intensity modulated RT, IMRT)
versus passive scattered proton RT for stage IIB-IIIA NSCLC patients (NCT00915005). All patients with
available pre- (week 0) and mid-treatment FDG-PET/CT (weeks 2-7) scans in the original trial were selected
for this retrospective study. After the exclusion of ineligible patients (due to poor image quality or missing
information), 69 patients (Proton = 24, IMRT = 45) were selected for the final study. The mean dose to gross
tumor volume (GTV) was 66-82 Gy-RBE (median = 74 Gy-RBE) delivered over 30-37 fractions (median =
37). The incidence of grade 2+ RP was 26% (n = 18). Further details on patients’ characteristics and RT
delivery is given in Table S1 of the Supplementary Material. We refer to the original trial publication [18]
for more extensive discussion of the trial results.

2.2 Mid-treatment biomarker

Following prior reports on the potential role of 18F-fluorodeoxyglucose (FDG) PET scan as an imaging
biomarker for RP risk [19, 20, 21, 22], we focus on the FDG-PET as our imaging biomarker. Voxel-level FDG
PET standard uptake value (SUV) obtained from pre- and mid-RT images were extracted. Conventional
SUV-based FDG metrics (SUVmean, SUV5%−95%, etc.) along with the slope of the linear regression line
relating the delivered dose to SUV change, denoted by SUVslope were used as specific imaging features in our
predictive model. The latter has been shown to be correlated with the risk of RP2+ [23], although unlike
their approach which relied on calculating SUVslope based on pre- and post-RT images, here we calculate it
using mid-treatment information. The image registration workflow for calculating the change in SUV values
is depicted in Figure 1. Majority of the patients received their mid-treatment images during week 4-5 of of
a 8-weeks RT course. The histogram of the distribution of when the mid-treatment images were acquired is
given in the Supplementary Material, Figure S1.

2.3 Risk Prediction module: Predicting RP using Bayesian Networks

2.3.1 Bayesian networks background

The diverse patient-specific information collected at baseline and during RT should be synthesized into an
estimate for the RP risk post-RT. In this work, a Bayesian Network (BN) model is trained for predicting the
probability of toxicity based on several dosimetric, clinical, and imaging features. BNs are direct acyclical
graphs (DAG) [24] which encode a joint probability distribution among the set of variables X in the dataset
[24, 25]. Given a dataset X = {X1, X2, . . . , Xp}, the joint probability distribution can be decomposed into
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a product form of conditional probability relationships among the variables:

P (X) =

p∏
i=1

P (Xi | Π(Xi)). (2.1)

where Π(Xi) denotes the set of parents (i.e., conditional dependencies) for the node Xi. The underlying
assumption is that the probability of Xi is (conditionally) independent of all other variables Xj ∈ {X \
{Xi,Π(Xi)}}.

The reason for choosing BN over other ML-based predictive models (e.g., random forests, support vector
machines, deep networks, etc.) are three-fold: (i) Unlike other score or vote-based classification methods, BN
provides a concise representation of the probabilistic dependencies between the set of random variables in the
dataset, which can be used for direct probabilistic inference; (ii) Unlike the “black-box” nature of the other
models, the graphical architecture of BNs offers transparencies and can increase trust in its predictions, an
important feature in sensitive medical decision makings; (iii) through modeling inter-variables dependencies,
BNs are capable of handling missing data by inferring their values from their dependencies (i.e., parents).

2.3.2 Data pre-processing

The features included in the BN were a collection of aforementioned imaging biomarker information, dosi-
metric information (e.g. mean lung dose (MLD), V5-V60, D2%, D98%, etc.), clinopathological information
(e.g., age, sex, performance status, lung functionality (FEV1/FVC), etc.), tumor-related information (stag-
ing, nodal involvement, tumor location, GTV volume, etc.), and PET-derived imaging features (SUV5−95%,
SUVmean, and SUVslope). Among the selected features (94 in total), the continuous ones were then binned
into two or three disjointed intervals according to Hartemink algorithm [26].

2.3.3 Model training

Training a Bayesian Network involves finding the structure (arcs) and parameters (conditional probabilities)
of the network. For the structural learning, a hill-climbing algorithm combined with Bayesian information
criterion (BIC) score was used to select the best model structure:

BIC(M(X)) =

n∑
i=1

logPM (Xi | ΠM (Xi))−
d

2
log n. (2.2)

where M is the BN structure (a set of conditional dependencies, i.e., arcs) and d is the number of param-
eters of the global distribution (here, the assumption is multinomial distribution). Model averaging using
bootstrapping (R=1000) was used to find the most stable arcs (i.e., those which appeared in over 50% of
the structures). Once a final structure was found, the network parameters were estimated using maximum
likelihood algorithm.

2.3.4 Model assessment

Although the output of interest is the probability of developing toxicity, it is hard (if not impossible) to assess
patient-specific probability in practice. Therefore, in order to assess the model’s predictive performance, the
patient-specific RP class C∗ was assigned using the Bayes’ theorem on the probabilities estimated from the
final network M∗ [24]:

C∗
i (δi) = argmaxCi∈{0,1}P (C | M∗, δ), (2.3)

where δ denotes the patient-specific information, a realization of X. Subsequently, the classification perfor-
mance was (internally) assessed using area under the curve (AUC) of the receiver-operating characteristics
curve (ROC) with 10-fold cross validation (CV). A 80%-20% split was used for the training and validation
set.

The output of the BN model is the predicted RP risk P (RP), based on the baseline and mid-treatment
information. This risk will be used in the next steps to guide the treatment planning. In order to integrate
the BN-based risk predictions with treatment plan optimization, an intermediate step is required to translate
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this risk into a parameter in the treatment planning optimization problem. This is the focus of the next
section.

2.4 NTCP Update module: Towards a patient-specific NTCP

Using the traditional Lyman-Kutcher-Burman (LKB) NTCP model, the risk of developing toxicity from a
dose D delivered to the lung is given by:

NTCPLKB = Φ

(
gEUD(D)− TD50

mTD50

)
, (2.4)

where

gEUD(D) =

[∑
i

viD
1/n
i

]n
(2.5)

and Φ(z) = 1√
2π

∫ z

−∞ e−
t2

2 dt, TD50 and m are the population-wide estimates denoting the dose leading to

toxicity in 50% of the population and the dose-slope at TD50, respectively, n is the volume parameter, and
Di the dose to relative sub-volume vi.

Using the concept of dose modifying factors (DMFs), Tucker et al. [27, 17] extended the LKB model to
incorporate non-dosimetric features such as clinical risk factors (e.g., smoking status [27]) and/or biological
information (e.g., single-nucleotide polymorphisms, SNPs [17]). Using their proposed concept, including k
non-dosimetric features will lead to the linear adjustment of gEUD in Eq. (2.4):

NTCPDMF = Φ

(
gEUD(D)[DMF1 . . .DMFk]− TD50

mTD50

)
. (2.6)

In order to integrate the BN-predicted RP risks with conventional treatment planning to determine how
(and how much) the dose should be adopted to account for this patient-specific risks, we borrow the concept
of DMF but treat it not as the modifying effect of one single covariate (e.g., smoking or gene mutation),
but a synthesis of all patient-specific information as predicted by our BN predictive module; that is, a
patient-specific DMF can be estimated based on the BN predictions:

ˆNTCPBN(D, ˆDMFBN) = PBN(RP) = Φ

(
gEUD(D) ˆDMFBN − TD50

mTD50

)
(2.7)

In this view, the role of the predictive module is transformed from assessing patient-specific probability
P (RP) which is a hard-to-grasp concept that cannot readily be integrated with treatment planning, to
estimating patient-specific DMF (denoted as ˆDMF), which not only can be viewed as a surrogate for the
radiosensitivity of the lung tissue, but as we shall see, can also be integrated within treatment planning to
personalize the treatment plan.

ˆDMFBN =
mTD50Φ

−1
(
PBN(RP)

)
+TD50

gEUD(D)
(2.8)

where Φ−1 is the inverse of Φ. The fact that Φ−1(z) is only defined for z ∈ (0, 1) implies that PBN(RP) ̸= 0, 1.
Note that this is not, in practice, restrictive, since, from a prospective angle, no event has truly a probability of
0 or 1. Figure 2 illustrates the relationship between ˆDMFBN and the predicted risk PBN(RP). Generally, the
lower the PBN(RP), the lower the ˆDMFBN, and the shallower the NTCP curve (indicating less radiosensitive
lung tissue).

2.5 Plan Adaptation module: NTCP-based RT personalization

If we are agnostic about patient radiosensitivity due to insufficient information (as is often the case before
the start of the treatment), we can do no better than to assess the risk assuming that the patient is similar
to the “average” population, and set ˆDMFBN = 1 (note that in this case, NTCPBN = NTCPLKB). However,
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Figure 2: Relationship between BN-predicted RP risk PBN(RP), ˆDMFBN and NTCPDMF. (a) changes in ˆDMFBN

as a function of (BN-) predicted risk for a representative case with mean lung dose of 17.49 Gy. (b) NTCP curves for
four exemplary cases with varying radiosensitivity, as estimated by ˆDMF DMF. The points symbolized by diamond,
circle, triangle, and square symbols denote the calculated risk at the mean lung dose for each case. NTCP parameters
were set to their population-wide estimates: TD50 = 30.8 Gy, m = 0.37, and n = 0.99.

once more information becomes available during the treatment course (in the form of PET scan images
or other relevant biological information), the RP risk can be estimated using the predictive model, and a
patient-specific DMF can be derived via Eq. (2.8). This will lead to a personalized NTCP model, which in
turn could be used to adapt the treatment course.

2.5.1 Mathematical modeling

In the remainder of this section, we will use T and L to refer to the set of voxels in the target and normal lung,
respectively, and use O to refer to all other regions of interest (ROIs). Assuming that the new information,
i.e., FDG PET images, and hence, new estimate for ˆDMFBN are revealed just before fraction T ∈ (1, N ],
where N is the total number of fractions (we treat N as fixed). This gives N rem = N − T + 1 remaining
fractions for delivering the adapted dose. Further, we assume during the first T − 1 fractions, a total dose of
Dm

pre, m ∈ {T ,L,O} had been delivered to the ROIs. We set an upper bound θ on the maximum tolerable
(projected) NTCP and a lower bound δ on the projected TCP. Further, to avoid target hot/cold-spots, we
impose a minimum and maximum dose constraints on the tumor dose DT (respectively ζ and ζ). The goal of

the optimization is to find the optimal post-adaptation dose distribution D∗
post = (DT ∗

post,D
L∗

post,D
O∗

post) during
the adaptation period [T,N ] so as to ensure maximum overall TCP while minimizing predicted NTCP.

We model TCP using the linear-quadratic (LQ) Poisson model [28]:

TCPLQ(D) = exp

−N0

NT∑
i=1

SFLQ(Di)

 , (2.9)

where SFLQ(Di) = e−αTDi−βTD2
i /N is the survival fraction of cells in tumor voxel i after delivery of a total

dose Di to a target with radiosensitvity parameters αT and βT (assumed to hold for all voxels within the
target). We denote by N0 and NT the total initial number of clonogenic cells and the total number of tumor
voxels in the target volume. The NTCP formulation has to be adjusted to account for fractionation effect.
This can be accomplished by using the fractionation-corrected version of NTCP in Eq. (2.7), as proposed in
[29]. To avoid overcrowding the notations, we refer to Appendix A for more details on how to incorporate
fractionation effect in the NTCP formulation. In order to be more consistent with current clinical practice
and ensure higher quality clinical plans, we use the physical dose model and penalize the squared deviation
from a prescribed tumor dose ζ ≤ DT

ref ≤ ζ.
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Putting all these together, in order to biologically adapt the treatment, the following fluence-map opti-
mization (FMO) problem should be solved:

(Pupdate) min
u2

∥DT
tot −DT

ref∥2 (2.10)

subject to: (2.11)

NTCPfrac
BN (DL

tot, ˆDMFBN) ≤ θ, (2.12)

TCPLQ(D
T
tot) ≥ δ, (2.13)

ζ ≤ DT
tot ≤ ζ, (2.14)

Dm
tot = Dm

pre +Dm
post, m ∈ {T ,L,O}, (2.15)

f(Dm
tot) ≤ 0, m ∈ {L,O}, (2.16)

Amu1 = Dm
pre/(T − 1), m ∈ {T ,L,O}, (2.17)

Amu2 = Dm
post/N

rem, m ∈ {T ,L,O}, (2.18)

u2 ≥ 0, (2.19)

where Am is the dose deposition matrix for the voxels in m ∈ {T ,L,O}, u1 and u2 are the vectors of beamlet
weights (fluence maps) for the pre- and post-adaptation periods, ∥.∥2 is the Euclidean norm, and f(x)
represents all other dosimetric constraints (e.g., mean/min/max dose or dose-volume histogram constraint).
Note that since u1 is already known at the time of adaptation (from the original plan), the only decision
variable here is u2.

The above formulation is noncovex and, as such, prone to suboptimal solutions. In the next section, we
will give a convex reformulation of the problem.

2.5.2 Convex reformulation

Assuming the non-convex DVH-based constraints are handled (using approximate techniques such as con-
straint generation [30], conditional value-at-risk [31], etc.), the only sources of non-convexity in Pupdate arise
from the TCP and NTCP constraint (2.12)-(2.13). Fortunately, as proven in Appendix B, it can be shown
that NTCPfrac

BN can be reformulated into a convex function using the following log-transformation:

g(NTCPfrac
BN ) = − log(1−NTCPfrac

BN ). (2.20)

Similarly, it has been shown that log TCPLQ(D) is strictly concave as long as we have Dk >
√

(αT /βT )N
2αT −

1
2 (α

T /βT )N , for every tumor voxel k [29]. Given that this assumption holds for clinically meaningful values
for αT ≃ 0.35 Gy−1 , (αT /βT ) ≃ 10 Gy, and N ≃ 35 for lung tumors1, a simple log-transformation
h(TCPLQ) = logTCPLQ will take care of the convexity of (2.13)2. Therefore, by replacing (2.12) and (2.13)
by their convex counterparts, we reach the following convex formulation, which can then be solved to global
optimality by conventional convex optimization algorithms:

(P ′
update) min

u2

∥DT
tot −DT

ref∥2 (2.21)

subject to: (2.22)

g(NTCPfrac
BN ) ≤ log(1− θ), (2.23)

h(TCPLQ) ≥ log δ, (2.24)

(2.14)− (2.19).

1It can be shown that the set defined by the right-hand-side (RHS) of the inequality attains its supremum (its most restrictive

case) when N = 1 and αT → 0, in which case, we have sup(RHS) =
√

1
2β

. Thus, for a typical minimum tumor dose of 60 Gy,

which will automatically be enforced via Const. (2.14), the convexity of log TCP is guaranteed as long as βT > 1.39 × 10−4,
which is known to hold not only for lung tumors, but for virtually all known tumor sites [32, 33].

2Note that constraints of the form f(x) ≥ q(x) where f(x) and q(x) are, respectively, concave and affine functions, are
convex [34].
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The output of this step is the adapted beamlet weights u∗
2 (and hence, the adapted dose distribution

D∗
post) that respects individual patient’s risk of toxicity PBN(RP). By ensuring that the patient-specific

NTCP will remain below a user-defined prescribed threshold θ and the predicted TCP remain high, the
algorithm automatically chooses the plan which is tailored towards the biological characteristic of a given
patient, thus resulting in a (NTCP-wise) personalized RT treatment plan. This plan will then be delivered
until the next update point or the end of treatment course. In the next section, we discuss some details
pertaining to the adaptation strategy.

2.5.3 Adaptation strategies

Based on the estimated radiosensitivity, one of two adaptation strategies could be pursued:

1. De-escalation: For radiosensitive patients (those projected to develop RP2+ under the original plan),
we minimize NTCP (i.e., reduce mean lung dose) as much as possible, within TCP boundaries.
We need to distinguish between two cases that might arise under this scenario. In the first case,
the NTCP constraint (2.23) can still be satisfied if the integral dose to the lung is reduced (without
violating tumor-based constraints (2.13)-(2.14). In other words, a feasible solution for (P ′

update) exists
and will be found by solving (P ′

update) to derive the optimal de-escalation strategy. This is termed
Type 1.a Adaptation.

In the second case, there is no feasible solution for (P ′
update) which will simultaneously satisfy the

tumor and NTCP constraints; in other words, too much dose has already been delivered to the lung.
In this case, the goal of adaptation is to minimize the NTCP as much as possible, without jeopardizing
tumor coverage. To achieve that, instead of (P ′

update), the Adaptation Module relaxes the hard NTCP
constraint (2.23) and solves the following optimization problem instead:

(P ′′
update) min

u2

wT ∥DT
tot −D′T

ref∥2 + wLg(NTCPfrac
BN ) (2.25)

subject to: (2.26)

(2.14)− (2.19),(2.24),

where D′T
ref = ζ, and wT and wL are priority weights assigned to tumor coverage and NTCP mini-

mization, respectively, and will be determined by the planner. We refer to this type of optimization as
Type 1.b Adaptation.3

It would significantly improve the adaptation speed if the feasibility of (P ′
update) can be determined

in advance, before solving the problem. This can be easily achieved by setting u2 = 0 and verifying
whether constraints (2.12)-(2.14) hold.

2. Escalation: For radio-tolerant patients (those unlikely to develop RP2+ under the original plan), we
maximize TCP (i.e., increase target dose) without violating NTCP constraints. This can be achieved
simply by setting DT

ref in (2.27) to its upper bound ζ and solving the following optimization problem
to optimality (this is referred to as Type 2 adaptation):

(P ′′′
update) min

u2

∥DT
tot − ζ∥2 (2.27)

subject to: (2.28)

(2.14)− (2.19),(2.23), (2.24). (2.29)

Figure 3 shows the methodology flowchart.

3Given that for fixed combinations of ˆDMFBN, TD50, andm, minimizing NTCPBN is equivalent to minimizing gEUD(DL
post),

the NTCP term in (2.25) can be replaced by the gEUD function of Eq. (2.5), which, since it is a norm and therefore convex
[34], can speed up the optimization. This could further be improved for n ≈ 1 (a typical value for a parallel organ such as
lung), in which case the gEUD formulation reduces to mean dose, which would subsequently result in a linear constraint.
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Figure 3: The schematics of the biological RT adaptation framework.

3 Numerical results

Image registration was performed in open-source imaging platform SlicerRT (Slicer.org) and Plastimatch
(plastimatch.org). All 69 patients were used during training and validation of the BN model. Parameter and
structural learning were performed using bnlearn [35] package in R v3.5.1. The classification performance was
evaluated via AUC based on a cut-off points derived from the ROC curve. Dose calculation and visualization
were performed using matRad toolbox [36] in MATLAB R2019a. Photon and proton dose calculations were
respectively based on the methods proposed by Bortfeld et al. [37] and Hong et al. [38]. To ease up the
computational burden, the ROIs were limited to four volumes: GTV, normal lung (total lung excluding
GTV), spinal cord, and heart. Voxel size was upsampled to 5 × 5 × 5mm to reduce memory requirements.
Max-dose constraint of 54 Gy-RBE was imposed on spinal cord. For heart and normal lung, mean dose
constraints of, respectively, 26 and 24 Gy(RBE) were imposed. Additionally, in line with the accepted level
of toxicity for grade 2 RP, as reported in QUANTEC 2013 [39], an upper bound θ = 20% was set for the RP
NTCP constraint (2.12). Minimum acceptable TCP was set to δ = 90%, and minimum and maximum target
dose (to GTV) were set to ζ = 66 and ζ = 80 Gy(RBE), respectively. Population-wide NTCP parameters
were set to TD50 = 30.8 Gy, m = 0.37, n = 0.99, and α/β for tumor and normal lung were set to 10 and 3
Gy, respectively. All plans were first optimized with the same beam arrangements and dosimetric constraints
of the original plan to recreate the original (delivered) dose distribution. The quality of the re-optimized
plan was tested both visually and using dosimetric criteria extracted from the delivered dose. Once verified,
the re-optimized plan was used as the basis of comparison between the baseline and adapted plans. For
optimization, MATLAB implementation of the interior-point optimization algorithm, IPOPT [40] was used.
All computations were performed on a desktop computer with 3.70 GHz Intel(R) Core(TM) i7-8700K CPU
with 32 GB of RAM.

3.1 Experimental setup

We ran the Predictive Module on the data acquired before (Pre) and during the RT (Mid) data. The impact
of adding mid-treatment information (additional FDG PET images) on model’s predictive performance was
assessed via the difference in the ROC-AUC. Both models were benchmarked against the LKB NTCP model
of Eq. (2.4). The mid-treatment BN was used to predict patients’ updated risk in the Adaptation Module.
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Figure 4: Receiver-operating characteristic (ROC) curves for predicting the risk of Grade 2+ radiation pneumonitis
(RP) at 3 months post-RT. Three depicting models are the LKB NTCP model of Eq. (2.4), and the BN models
trained on pre- and mid-treatment data. The dashed line represent the chance line (AUC = 0.50). Optimal cut-off
values used for the classifiers were 0.22, 0.50, and 0.54 for the predictions of NTCPLKB, BNPre and BNMid models.

Fifteen patients were selected to evaluate the performance of the Adaptation Module: 5 patients who did
not develop RP (RP2+ = 0) and 10 who did (RP2+ = 1). The correct adaptation strategy (Type 1.a, 1.b,
or 2) was automatically selected according to § 2.5.3. The adapted plans were compared to the original plans
based on DVH metrics and the change in the projected RP risk.

3.2 RP risk prediction

The pre-treatment and mid-treatment BN models for predicting RP2+ yielded AUCs of 0.79 (95% confidence
interval, CI = [0.59-0.89]) and 0.84 (95%CI = [0.73-0.96]), respectively, as demonstrated in Figure 4. Both
models improve upon the predictive performance of LKB NTCP models (AUC = 0.77, 95% CI = [0.55-
0.87]), which solely rely on dosimetric information extracted from RT plans to predict the toxicity risk.
The final mid-treatment BN model is depicted in Figure 5. According to the model, the risk of developing
grade 2+ RP is affected by three major factors: (i) RT-specific factors, including the dose delivered to
normal lung (e.g., V5, V20, MLD) and longer treatment length; (ii) clinical factor, including sex, breathing
function, performance status, and smoking status; and (iii) underlying biological factors captured by FDG
SUV metrics, specifically those extracted from mid-treatment images.

Figure 6a shows the waterfall plot of the RP risks predicted by the final BN. On average, patients who
did not develop RP2+ had significantly lower predicted risk than those who did (0.17 vs. 0.49, Wilcoxon’s
p < 0.0001, 95%CI for difference between groups = [−0.55,−0.15]). Further, the magnitude of the predicted
risks corresponded with the severity of the radiation toxicity (i.e., RP grade), as depicted in Figure 6b.
Specifically, the average predicted risk for grade 1-4 RP were 0.18, 0.42, 0.63, and 0.76, respectively (Kruskal-
Wallis’ χ2 = 17.93, p = 0.0004).

3.3 Plan adaptation

For those patients (n = 10) who were classified as high-risk (hereon after denoted by RP2+ = 1) and whose
predicted risk was above the maximum NTCP threshold of θ = 0.20, a dose de-escalation strategy (Type 1.a
or 1.b) was performed. Dose escalation strategy (Type 2) was applied to the patients who were predicted
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(a) (b)

Figure 5: The structure of the final mid-treatment BN model for predicting the RP risk PBN(RP): (a) Full BN
structure, (b) BN structure with feature classification according to feature type.

(a) (b)

Figure 6: BN-predicted RP riskss: (a) waterfall plot for patients predicted risk, grouped by the (actual) post-RT RP
status, where RP2+ = 0 (1) denotes patients who did not (did) develop RP; (b) Box and Whisker plot for patient’s
BN-predicted risk according to RP grade, scored based on CTCAE v3, with corresponding Wilcoxon’s p-values for
group comparison.

not to develop grade ≥ 2 RP (classified as low-risk, RP2+ = 0), and whose predicted risk was below 0.20.
Before presenting the full results, we first investigate four representative cases in more details.

3.3.1 Case 1: Minor de-escalation

Case 1 was a 75 years old non-smoker male, treated with proton RT to an originally-planned dose of 76
Gy-RBE in 37 fractions. LKB NTCP model predicted a risk of 0.12. The patient eventually developed
grade 2 RP (RP2+ = 1). BN-predicted risk for this patient was 0.26 (corresponding to ˆDMFBN = 1.15).
The Adaptation Module was used to de-escalate the dose to bring the projected risk below the maximum
NTCP threshold of 0.20 (Type 1.a adaptation). Figure 7a shows the DVH plots for the original vs. adapted
plans. The DVH plot for the target (GTV) shows is lowered to spare the dose to the entire normal lung
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(a) (b)

(c) (d) (e)

Figure 7: Original vs. Adapted plans for Case 1: (a) Dose volume histogram (DVH) for the original (solid) and
adapted (dashed) plans; (b) TCP-NTCP curves for both plans. The black arrow denotes the change in NTCP from
the initial expectation (0.12) to the projected risk (0.26). The pink diamond denotes the adapted risk (0.20); (c)-(e):
Dose distribution for Case 1; (c) original plan (37 fx), (d) adapted plan (for the remaining 10 fractions), and (e) new
plan (27 fx of original + 10 fx adapted). The contours for GTV, PTV, total lung, and spinal cord are colored in red,
orange, black, and cyan, respectively. The yellow (white) arrows denote the areas where the dose has been decreased
(increased) in the adapted plan compared to the original one. The blue shaded area denotes the change in NTCP
due to adaptation.

(depicted in the DVH plot of the normal lung). This drop in the mean tumor dose resulted in the mean lung
dose reduction (MLDorig = 19.2 vs. MLDadapt = 17.2 Gy-RBE), which in turn were predicted to result in
an NTCP reduction of 0.06 (Figure 7b). It appears from Figure 7e that this reduction in NTCP has been
achieved by shifting a partial region of high dose (> 60 Gy-RBE) outside the normal lung (V60orig = 15%
vs. V60adapt = 11%). This has come at the expense of dose increase in the area denoted by the white arrows
(note that no constraint was imposed to regulate the dose in these areas).

3.3.2 Case 2: Moderate de-escalation

Case 2 was an 80 years old male with a history of heavy smoking, treated with IMRT to an originally
planned dose of 74 Gy in 33 fractions. The patient eventually developed grade 3 RP (RP2+ = 1). Based
on the planned dose, LKB NTCP was estimated at 0.20. The BN model projected the RP risk to be
0.33 ( ˆDMFBN = 1.21). Therefore, the Adaptation Module seeks to de-escalate the dose (using Type 1.a
adaptation) in order to lower the risk below the pre-specified threshold of θ = 0.20. Figure 8 shows the
DVH and NTCP-TCP plots for the original and the adapted plan. In this case, the NTCP goal of 0.20
(down from the original 0.33) was achieved after a 2-Gy mean tumor dose reduction (from 75.4 to 73.4 Gy)
- corresponding to MLD reduction from 23.4 to 19.2 Gy. Note that, as depicted in Figure 8b, this has been
achieved without compromising TCP (close to 100%). Also, tumor coverage remains high (D98adapt = 76.5
Gy). Figure 8e better illustrates this significant dose reduction.
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(a) (b)

(c) (d) (e)

Figure 8: Original vs. Adapted plans for Case 2: (a) DVH plots for the original (solid) and adapted (dashed) plans;
(b) TCP-NTCP curves for the original and the adapted plan. (c)-(e): Dose distribution for Case 2; (c) original plan
(33 fx), (d) adapted plan (for the remaining 10 fx), and (e) new plan (23 fx of original + 10 fx adapted). The contour
for GTV, PTV, total lung, heart, and spinal cord are colored in red, orange, black, purple, and cyan, respectively.

3.3.3 Case 3: Major de-escalation

Case 3 was a 48 years old heavy smoker female treated with IMRT who eventually developed grade 3 RP.
The original plan delivered a mean GTV dose of 82 Gy and the LKB NTCP was estimated at 0.24, while
the mid-treatment BN-projected risk based on patient-specific information (acquired at fx 25), was 0.67
( ˆDMFBN = 1.58 > 1), indicating a patient with higher-than-average lung radiosensitivity. Accordingly, a
de-escalation strategy was chosen for plan adaptation. Based on the high predicted radiosensitivity of this
case, the NTCP goal of 0.20 could not be achieved given the already delivered dose and the constraints on
the minimum TCP and tumor dose (respectively set at 90% and 66 Gy); that is, the amount of dose delivered
in the first 24 fractions (MLDpre = 17 Gy, DT

pre = 56 Gy) was deemed “too much”. Therefore, Type 1.b
adaptation was chosen wherein the goal was set to minimize the NTCP risk as much as possible, within the
given constraints (i.e., solve P ′′

update in (2.25), with wT = 1 and wL = 10). Figure 10 shows the results. After
tumor dose reduction of 16.8 Gy (from 82.7 down to 65.9 Gy), corresponding to an MLD reduction from
25.2 to 19.8 Gy, the minimum NTCP of 0.41 was achieved (down from 0.67 using the original plan). Note
that even after this significant tumor dose reduction, the estimated TCP remained very high (Figure 9b).
Also note that only a dose of about 10 Gy was found optimal to deliver over the remaining 13 fraction; i.e.,
the adapted plan called for a ultra-hyperfractionation scheme of ≈ 0.77 Gy/fx to preserve lung functionality.
This can be verified in Figure 9d.

3.3.4 Case 4: Dose escalation

Case 4 was a 66 years old male with moderate history of smoking, treated with IMRT to a mean tumor
dose of 65.8 Gy in 30 fractions. The treatment was well-tolerated (RP grade = 1). The mid-treatment
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(a) (b)

(c) (d) (e)

Figure 9: Original vs. Adapted plans for Case 3: (a) DVH plots for the original (solid) and adapted (dashed) plans;
(b) TCP-NTCP curves for the original and the adapted plan. (c)-(e): Dose distribution for Case 3: (c) original plan
(37), (d) adapted plan (for the remaining 13 fx), and (e) new plan (24 fx of original + 13 fx adapted).

FDG-PET was taken at fraction 20. The estimated LKB NTCP was 0.17 and the predicted BN-based risk
was 0.09 ( ˆDMFBN = 0.71 < 1), indicating a radio-tolerant patient (in terms of normal lung radiosensitivity).
Since the predicted NTCP is lower than the NTCP threshold of 0.20, an escalation adaptation strategy
was pursued (Type 2). Figure 10a shows the results of the adaptation strategy. The mean tumor dose was
increased from 65.8 in the original plan to 78.9 Gy, resulting in an increase in the projected NTCP to 0.17
(which was still lower than the maximum tolerable level of 0.20), while respecting the constraints on heart
and spinal cord.

Table 1 summarizes the results of the plan adaptation for all fifteen tested patients. All patients who
were predicted in the RP2+ = 0 class (n = 5) and whose predicted risk was projected to be lower than
0.20, received dose escalation (Type 2). On average, dose escalation resulted in an increase in mean tumor
dose (MTD) of about 6.47 Gy(RBE) (range = [2.67-17.5], standard deviation, σ = 6.25). This came at
the expense of an average increase in MLD of 0.12 Gy(RBE) [2.57-7.05] (σ = 1.46). Consequently, the
average increase in projected NTCP was 0.02 [0-0.08] (σ = 0.03). The projected NTCP after adaptation was
successfully kept below 0.20 in all cases. Among the remaining patients (n = 10) who were candidates for
de-escalation (predicted in the RP2+ = 1 with predicted NTCP > 0.20), two underwent Type 1.a adaptation
(reaching an acceptable adapted NTCP ≤ 0.20), and eight were adapted via Type 1.b adaptation (NTCP
was minimized as much as possible, but could not be reduced below 0.20). On average, for de-escalation
candidates, MTD was reduced by 7.98 Gy(RBE) [0.15-19] (σ = 6.40), resulting in an average MLD and
NTCP reduction of 2.98 Gy(RBE) [0.8-5.4] (σ = 1.33) and 0.15 [0.04-0.27] (σ = 0.07), respectively. Average
ˆDMF for the radio-tolerant (RP2+ = 0) and radiosensitive (RP2+ = 1) groups were 0.8 and 1.63.
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Figure 10: Original vs. Adapted plans for Case 4: (a) DVH plots for the original (solid) and adapted (dashed)
plans; (b) TCP-NTCP curves for the original and the adapted plan. (c)-(e): Dose distribution for Case 4: (c) original
plan (30), (d) adapted plan (for the remaining 11 fx), and (e) new plan (19 fx of original + 11 fx adapted).

3.4 Impact of biomarker acquisition timing

To investigate the impact of biomarker acquisition timing, we varied the update point for a representative
the cases (Case 3 in § 3.3) and re-ran the Adaptation Module for each instance. In keeping with the actual

Table 1: Summary of the adaptation results. MTD = mean tumor dose; MLD = mean lung dose; fx: fraction; P (RP):

BN-predicted risk; ˆDMF: pat ient-specific dose modifying factor; Adapt: Adaptation type: (1.a) dose de-escalation, (1.b)
minimizing NTCP, (2) dose escalation; O: Original plan; A: Adapted plan. MLD and MTD are given in Gy(RBE).

No. MTDO MLDO NTCPO RP grade Update fx P (RP) ˆDMF Adapt MTDA MLDA NTCPA
1 76.70 11.30 0.06 1 36/37 0.01 0.38 2 79.5 11.7 0.01
2 61.40 19.66 0.17 1 20/30 0.09 0.61 2 78.9 17.2 0.17
3 74.99 18.05 0.13 1 31/37 0.12 0.96 2 79.49 18.79 0.13
4 74.70 16.60 0.11 1 31/37 0.15 1.13 2 79.7 17.4 0.17
5 77.20 15.78 0.10 1 12/37 0.19 0.94 2 79.77 16.89 0.20
6 76.27 19.20 0.12 2 28/37 0.26 1.15 1.a 76.12 17.2 0.20
7 75.40 23.40 0.20 3 29/33 0.34 1.21 1.a 73.4 19.2 0.20
8 71.82 24.48 0.22 2 23/33 0.54 1.30 1.b 64.82 20.51 0.36
9 73.40 16.86 0.19 2 30/35 0.64 2.04 1.b 54.4 14.68 0.48
10 65.98 24.26 0.22 3 28/30 0.67 1.63 1.b 65.43 23.46 0.63
11 82.20 25.20 0.24 3 25/37 0.68 1.58 1.b 65.9 19.8 0.41
12 75.70 15.98 0.11 2 28/33 0.68 2.14 1.b 65.14 13.64 0.50
13 71.98 22.12 0.19 3 25/30 0.73 1.82 1.b 65.68 18.86 0.53
14 77.68 24.10 0.28 3 28/30 0.76 1.60 1.b 66.12 20.71 0.62
15 72.05 23.91 0.21 4 28/30 0.76 1.79 1.b 65.72 21.66 0.64

Mean/Median*/Mode†

All 73.83 20.06 0.17 2* 28*/33* 0.44 1.35 1.b† 70.67 18.11 0.35

RP2+=0 73.00 16.28 0.11 1* 31*/37* 0.11 0.80 2† 79.47 16.40 0.14

RP2+=1 74.25 21.95 0.20 3* 28*/33* 0.61 1.63 1.b† 66.27 18.97 0.46
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Figure 11: Impact of the change in update point on overall adaptation performance, in terms of adapted NTCP.
The adaptation switches from Type 1.a to Type 1.b when the update point changes from fraction 20 to 21. There
is no use in updating after fraction 31/37, as the dose delivered to tumor already exceeds the minimum tumor dose
of 66 Gy(RBE), rendering the adaptation problem infeasible. The reported NTCP is for the case where the RT is
stopped at the corresponding fractions.

range of the image acquisition timeline in the entire dataset, we simulated the experiments by varying the
timing of the PET acquisition between fractions 10-37 (out of a total 37 fractions). We assumed the same
FDG image was taken on each timepoint. Similarly, all the other parameters, including the predicted risk
of 0.66, dosimetric criteria, and total number of fractions, remained unchanged; that is, the difference in
the reported adapted NTCP value is solely the result of varying the update point (and thus the adaptation
“room”). The result, given in Figure 11, point to the large impact of the timing on the overall performance
of the adaptation scheme (NTCPadapt = 0.20 vs. 0.43, when the update point was at fx 20/37 vs. 30/37).

4 Discussion

In this paper, we have presented an end-to-end methodology for personalizing the radiation treatment of
NSCLC patients using patient-specific information collected from pre- and mid-treatment FDG PET images.
The proposed methodology synthesizes the imaging data with other clinicopathological information using
an interpretable Bayesian Networks machine learning model, predict the probability of developing radiation
toxicity (grade 2+ RP), and uses that prediction to automatically adapt the treatment course based on
a novel NTCP-based plan optimization. We had previously proposed a TCP-based adaptive approach
[41] to integrate imaging (PET) information regarding tumor response into treatment planning. There,
we assumed that the change in PET SUV signal between pre- and mid-treatment scans can be directly
translated into patient-wise radiosensitivity parameter α. The methodology proposed here can be seen both
as complimenting our previous approach, insofar as it focuses on NTCP instead, and extending it, since
it embeds the imaging information within a response prediction model before estimating patient-specific
radiosensitivity. The methodology improves upon other pre-treatment classification methods by including
mid-treatment information to update the initial risks. Further, instead of a simple binary classification
which is not amenable to plan adaptation, it estimates the probability of developing RP risk, which is not
only closer to the concept of NTCP and can be implemented during treatment planning, but is capable of
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distinguishing between patients in the same RP class and advises a more nuanced adaptation strategy, thus
helping to move from a stratified approach towards a more personalized one. Finally, the method is capable
of automatically finding the optimal adaptation strategy for each patient, given their predicted risk and the
desired levels of TCP and NTCP set by physician/planner.

The effectiveness of Bayesian Networks for predicting RP risks has been investigated by a number of
authors [42, 43, 44, 45]. Our model extends their results to include mid-treatment imaging information
alongside clinicopathological data. Despite the relatively smaller sample size in our dataset, the predictive
performance (AUC ≃ 0.84) was on par with the previous results. In the final model, RP was shown to be
simultaneously impacted by three main classes of factors: dosimetric factors extracted from the delivered
plan, clinicopathological factors evident at presentation, and radiobiological factors indicated by the mid-
treatment FDG PET information (SUV features). It is interesting that in the latter class, in addition to
the well-known mean SUV, both lower SUV percentiles (5-20%), and higher percentiles (60,95%) were also
picked by the model as potential predictors of the outcome (Figure 5), indicating that, despite being highly
correlated with one another (Pearson’s r ∈ [0.63, 0.99]), they nevertheless provide somewhat complimentary
information with regards to RP risk. Further, the results of bootstrapping showed that the frequency with
which each class appeared in the final model was roughly equal, indicating a balanced contribution across
the classes, which is more or less in line with common wisdom, and thus can provide a qualitative validation
for our predictive model and enhance physicians’ trust in its predictions.

The results showed that the addition of mid-treatment FDG-PET images improved the predictive per-
formance of the BN model, resulting in an AUC increase from 0.79 to 0.84. Specifically, this corresponded
to reclassification of 3 patients in our cohort (all from RP2+ = 0 to 1, denoting an increase in sensitivity).
Although the impact of post-treatment FDG uptake on RP had been previously reported [23, 46], such in-
formation cannot be used for plan adaptation purposes, as the treatment is already over by the time the RP
prediction is made. The effect of mid-treatment FDG information in predicting RP has not, to the best of
our knowledge, been reported (except for our previous findings on a subpopulation of the current dataset
[47]). It is noteworthy that despite using far fewer features, a simple LKB NTCP risks yielded a descent
AUC of 0.77, indicating the relative adequacy of such models for comparing the relative risks between two
plans.

The correspondence between predicted risk and RP severity, as depicted in Figure 6b, is very important.
Unlike many (binary) classification scores which are solely used to stratify patients between two groups
(responders vs. non-responders) and are often noninformative with regards to severity, the BN-predicted
risks showed an association with the RP grade (the higher the grade, the higher the predicted risk). Although
this trend is very promising, the small sample size in the higher RP grades (grade 3, n=5, and grade 4, n=1)
made it impossible to fully investigate this association. Nevertheless, this is a crucial feature in our adaptation
approach, as the magnitude of the predicted risk is used to determine the intensity of dose (de)escalation;
i.e., patients with a higher risk (hence, likely to develop more severe RP) underwent more intense dose
de-escalation.

The results of the adaptation showed that the methodology is capable of automatically adapting the
treatment course for a wide range of patient risks and original plans. During the optimization of the de-
escalation cases (especially in Type 1.b optimization), the minimum tumor dose constraint was often the
binding constraint, preventing from further improving NTCP. For a number cases in Type 1.b, it would
have been possibly to further improve NTCP by lowering the minimum tumor dose constraint to, say, 60
Gy(RBE), if deemed permissible by the treating physician. Similarly, during dose escalation, the restricting
constraint was often the maximum tumor dose of 80 Gy(RBE). Given the precedence of delivering up to
86 Gy(RBE) to NSCLC patients [21], one could increase the upper bound for a more aggressive plan.
However, it is impossible to evaluate the impact of such dose (de)escalation strategies on tumor control
without an equivalent patient-specific TCP model. In our numerical results, the adopted plan was usually
an approximately linearly scaled version of the original plan. This can be explained by the (roughly) linear
relationship between predicted risk and DMF in Figure 2 when the predicted risk is between around 0.2 and
0.8. Knowing this, the adapted plan can be simply obtained by a linear dose (de)escalation that results in
the fulfilment of the NTCP constraint, thus saving computational time by foregoing a full-on optimization.
Nevertheless, the optimization model is capable of delivering the optimal adapted plan for cases when the
predicted risk is outside the linear range.

One important factor in determining the quality of the adapted plans (and how likely it is to respect NTCP
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constraints) is the timing of the image acquisition (i.e., update point). Unfortunately, there does not appear
to be consensus for the optimal acquisition timing of FDG PET images for NSCLC patients [48, 19, 49]. In
our experiments, as can be deduced from Table 1, in cases where the update point was towards the end of the
treatment and only a few fractions were available for plan adaptation, the Adaptation Module did relatively
worse. This is intuitive, since the later the information arrives, the less “room” there is for adaptation.
This results were confirmed by the experiments in § 3.4. However, the benefit of earlier image acquisition
is somewhat mitigated by the fact that images taken earlier during the treatment might not have the same
level of biological information present at later fractions, mainly due to the time and the dose threshold
needed for biological changes to manifest in radiological images. The latter can impose some challenges in
translating the results of this work in treatments with small number of fractions such as stereotactic body
radiation therapy, which are current gaining momentum for treatment of early stage lung cancers [50, 51].
In such cases, dispersing the dose over multiple stages or “pulses” could give the biological effect time to
be manifested in biomarkers and subsequently be used in RT adaptation, similar to the newly-proposed
PULSAR paradigm [52].

Our methodology follows a modular design, wherein each of the three modules (risk prediction, NTCP
penalization, and plan adaptation), could be modified to account for alternative approaches. For instance,
one can use a different model for the risk prediction phase, as long as the model is probabilistic (i.e.,
provides probability of outcome instead of class) and there is at least some level of association between these
probabilities and RP severity. Similarly, instead of DMF to link the model’s prediction to NTCP parameter,
one can simply update the population-wide TD50 and use the update TD50 to arrive at a patient-specific
NTCP. Further, other (faster) optimization algorithms such as conic optimization [53] or lexicographic
optimization [54] can be used in the Adaptation Module, as long as the method is capable of handling
TCP and NTCP constraints.

Despite its advantages, the limitations of our study have to be acknowledged. First, the limited sample
size of our study could jeopardize the generalizability of our predictive model. Although we attempted to
account for it using statistical techniques and internal validation (bootstrapping and cross validation), it is
hard to foresee the model’s generalizability without applying it to a much larger and ideally multi-institutional
dataset. Second, the translation of the model predictions (RP risks) into a single NTCP parameter ( ˆDMFBN)
is perhaps an oversimplification (which we nevertheless had to make in order to bridge the gap between the
Predictive Module and the Adaptation Module), as it reduces the complexity of a multi-factor predictions
(and thus patients’ complex radiosensitivity) into a single parameter. Even though this is in line with a
traditional way of modeling radiosensitivity in the RT literature (using α/β parameters), a better approach
would have been to directly integrate the predictive model into the treatment planning process. This is the
subject of our ongoing research and we hope to report on that in a follow-up publication. Another important
aspect which was outside the scope of this study but nevertheless is worth mentioning, is the impact of
uncertainties on the adaptation. There are three main sources of uncertainties: (i) biomarker uncertainties
contained within the FDG SUV signals4, (ii) modeling uncertainties (uncertainties regarding the predictions
of the model, i.e., model “accuracy”), and (iii) uncertainties arising while translating the risk into NTCP
parameter. Taking all (or some) of these uncertainties into account would require robust optimization.
We had previously researched the impact of some robust optimization methods on reducing parameter and
model’s uncertainties [55, 56, 57, 58]. Lastly, we only included four OARs in the Adaptation Module, which
inevitably lead to oversimplification of the optimization problem and overestimating the extent to which the
plan can be adapted. However, our aim here was not to present a fully clinical version of our methodology,
but to investigate its feasibility and potential clinical impact. Of course, the full examination of the clinical
impact requires running a full-on clinical trial.

Despite these limitations, this study, for the first time, proposes a rather simple method for bridging the
gap between machine learning and optimization, and offers a biologically-informed and systematic approach
for adapting the treatment course of NSCLC patients which does not require physicians to pre-specify the
adaptation dose level [21, 49]. In our future works, we aim at combining our approach with our previous [41]
TCP-based plan adaptation scheme to provide a full TCP-NTCP-based treatment personalization framework.

4These can be further classified into two classes: (1) inherent uncertainties of FDG PET scans to assess patients’ metabolism,
and (2) uncertainties resulting from image registration between the pre- and mid-treatment scans.
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5 Conclusions

In this project, we have implemented a three-component framework to adapt the RT treatment plans of
NSCLC patients according to individually predicted risk of radiation pneumonitis, using FDG PET images
acquired during the course of RT. We have shown that a personalized adaptation plans can be derived by
using mid-treatment FDG PET scans and a novel machine learning-based predictive model. This work
can be seen as a proof-of-concept for future development of such personalized treatment planning model
which, if implemented, might make a significant contribution towards enhancing the existing “one-size-fits-
all” methodologies in treatment planning in radiotherapy. The proposed methodology could help the design
of personalized clinical trials for NSCLC patients.
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Dingemans, Gerben Bootsma, Wiel Geraedts, Cordula Pitz, Jean Simons, Philippe Lambin, and Dirk De Ruyss-
cher. Individualized Radical Radiotherapy of Non–Small-Cell Lung Cancer Based on Normal Tissue Dose Con-
straints: A Feasibility Study. Int. J. Radiat. Oncol., 71(5):1394–1401, aug 2008.

[7] Bart Reymen, Angela Van Baardwijk, Rinus Wanders, Jacques Borger, Anne Marie C. Dingemans, Gerben
Bootsma, Cordula Pitz, Ragnar Lunde, Wiel Geraedts, Philippe Lambin, and Dirk De Ruysscher. Long-term
survival of stage T4N0-1 and single station IIIA-N2 NSCLC patients treated with definitive chemo-radiotherapy
using individualised isotoxic accelerated radiotherapy (INDAR). Radiother. Oncol., 110(3):482–487, mar 2014.

19



[8] Qin Zhang, Xu Wei Cai, Wen Feng, Wen Yu, and Xiao Long Fu. Dose-escalation by hypofractionated simul-
taneous integrated boost IMRT in unresectable stage III non-small-cell lung cancer. BMC Cancer, 22(1), dec
2022.

[9] Andreas Hallqvist, Stefan Bergström, Hedvig Björkestrand, Anna Maja Svärd, Simon Ekman, Erik Lundin,
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Faivre-Finn, and José Belderbos. The acute and late toxicity results of a randomized phase II dose-escalation
trial in non-small cell lung cancer (PET-boost trial). Radiother. Oncol., 131:166–173, 2019.

[11] Charles Gillham, Daniel Zips, Falk Pönisch, Carsten Evers, Wolfgang Enghardt, Nasreddin Abolmaali, Klaus
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6 Appendices

A Fractionation-corrected NTCP

In order to adjust the NTCP in Eq. (2.7) to the change in fractionation as the result of adaptation (i.e., delivering
two distinct dose distribution (pre- and post-adaptation), we resort to the concept of biologically-effective dose (BED)
proposed by [28]. For an organ receiving Dpre and Dpost during the first N1 = (T−1) and the second N2 = (N−T+1)
fractions, the fractionation-corrected BED is calculated as

BED(Di) = Dpre
i

(
1 +

Dpre
i /N1

α/β

)
+Dpost

i

(
1 +

Dpost
i /N2

α/β

)
, (A.1)

where α/β is the OAR radiosensitivity parameter [28]. Further, since all NTCP parameters are estimated for a
standard fractionation (2 Gy/fraction), we need to convert the dose to an equivalent 2-Gy-per-fraction dose. This
can be accomplished converting BED to the modified equivalent uniform dose [59], as recommended by AAPM Report
166 [60]:

LQED2(Di) =
BEDi(Di)

1 + 2
(α/β)

. (A.2)

Therefore, the fractionation-corrected version of NTCPBN in Eq. (2.7) can be calculated as

NTCPfrac
BN (D, ˆDMFBN) = NTCPBN

(
gEUD[LQED2(D)], ˆDMFBN

)
. (A.3)

B Convexity of the fractionation-corrected NTCP

The convexity of NTCPfrac
BN can be proven by following the deductive steps given below:

1. The log-transformation g
(
NTCPfrac

LKB(D)
)
= − log

(
1−NTCPfrac

LKB(D)
)
, where NTCPfrac

LKB is dervied by setting
ˆDMFBN = 1 in (A.3), is convex (see [29] for proof of convexity).

2. According to the composition rule of convexity [34], a composite function H = g ◦ f = g(f(x)), where g, f :
ℜn 7→ ℜ, is convex if g is convex and nondecreasing (nonincreasing), and f is convex (concave).

3. If we set g = − log
(
1−NTCPfrac

LKB(D)
)
(which is both convex and nondecreasing) and f(D) = ˆDMFBND, ˆDMFBN >

0 (which is convex), then H = − log
(
1−NTCPfrac

LKB(f(D))
)
will be convex.

4. The convexity of NTCPfrac
BN follows by verifying that NTCPfrac

BN = H.
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